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Abstract 

For effective training outcomes, surveillance-based Air Traffic Control simulation requires accurate 

modelling of aircraft flight profiles, particularly of climb-rate performance at lower levels. The 

implementation of automated reporting of various flight parameters using ADSB has made available 

large volumes of data that may be used to check and revise existing performance models, such as those 

published by Eurocontrol. It is the aim of this paper to investigate the climb-rates of common jet 

aircraft types using data from inflight reports for comparison with published values, as well as to 

develop insight into the applicability of this type of data to other aspects of aircraft performance 

modelling.  A sample of over ten million aircraft broadcasts, recorded during a 24-hour period in 2013, 

was filtered and arranged to generate a sequential group of reports for each of the 32,000 flights in the 

dataset, each representing the trajectory of an aircraft. Using data visualisation tools on these 

trajectories, the climb-rates of eight common aircraft types were compared with those published by 

Eurocontrol for these types. It was found that visualisations of ADSB data enabled an effective 

analysis of aircraft performance profiles in the vertical plane. Results further indicated that the 

Eurocontrol model overestimated the climb-rate to 5,000 feet for all types except the Boeing B744. It 

was concluded that the analysis of ADSB information has applicability in the modelling of climb-rates 

and other aspects of aircraft performance and the capability of improving the quality of Air Traffic 

Control simulation. 

Introduction 

The provision of high-fidelity Air Traffic Control (ATC) simulation training relies on accurate 

modelling of aircraft profiles (flight performance characteristics) to create realistic 4D trajectories 

(Sukhov et al 2005). The construction of accurate trajectories in the vertical plane presents the greatest 

challenge, due to the relative variability of climb and descent rates (Magill, 1996). For ATC training, it 

is particularly important to have correct modelling during the initial stages of flight, due to the higher 

density of traffic around aerodromes and increased traffic management complexity. (Gillet et al 2010). 

Aircraft performance models are generated by either applying the physics of flight (kinetic modelling) 

or by using measurements of actual aircraft behaviour (kinematic modelling) (Nuic et al, 2005).  The 

advent of Automatic Dependent Surveillance Broadcast (ADSB) technology provides access to vast 

quantities of recorded position, speed and altitude information which may be used to improve existing 

kinematic models, such as those published by the European Organisation for the Safety of Air 

Navigation (Eurocontrol). 

It is the aim of this study to: 

• Investigate initial climb-rates exhibited by the eight most flown passenger jet aircraft models 

undertaking commercial airline operations. 

• Compare these rates with those published by Eurocontrol and commonly used for ATC simulation 

(Aircraft Performance Database. 2012) and 

• Assess applicability of ADSB data to improve aircraft performance models in ATC simulation. 

Data 

The raw data for this observational study were provided by FlightRadar24 (FR24), a service that uses 

ADSB technology to record flight position and speed information (Flight Radar 24 AB, 2020). FR24 

receives and records squits (individual ADSB broadcasts) from connected aircraft at intervals of 

approximately five seconds. For use in this paper, squits collected over a 24-hour period commencing 
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at 12am Universal Coordinated Time (UTC) on 23 November 2013 were provided by FR23 in 16,947 

Javascript Oriented Notation (JSON) files. Each file contained the received squits for a single five 

second period and, in total, there was a sample size of in excess of 10 million squits. 

Each squit carried 18 elements, eight of which were relevant to climb profile analysis for this study or 

retained as they may be relevant for extended analysis in related work: The variables were: 

• Altitude (numeric integer): the altitude of the aircraft in feet. 

• AircraftType (nominal with multiple factors): the International Civil Aviation Organisation 

(ICAO) code for the aircraft model. 

• FlightNumber (nominal with multiple factors): the identification for the flight, commonly the 

airline abbreviator and a numerical identifier for the flight. 

• Latitude (numeric decimal): the latitude of the aircraft in degrees. 

• Longitude (numeric decimal): the longitude of the aircraft in degrees. 

• Origin (nominal with multiple factors): the code for the origin airport. 

• Speed (numeric integer): the groundspeed of the aircraft in knots. 

• SquitDateTime (numeric integer): the UTC time at which the squit was received. 

It is noted that acquisition of ADSB data requires the carriage by the aircraft of compatible equipment 

and that squits are detectable by the FR24 network. Additionally, information on certain aircraft such 

as emergency flights and military operations may be blocked and not provided in these data. 

Methods 

The RStudio package (RStudio Team 2016) was used for sampling and analysis with techniques from 

in R for Datascience (Grolemund &Wickham 2020). All code is included in Appendix 1. 

Pre-processing: Data-cleaning and Type Conversion 

The JSON files were imported using the rjson package (Couture-Beil, A 2018) into individual data-

frames, and then combined into a single data-frame containing all recorded squits.  

Using the dplyr package (Wickham, H. et al 2019), the following steps were taken to clean and tidy 

the squit information: 

• Variables were allocated appropriate names with the rename() function; 

• A type conversion for SquitDateTime, which was provided as a date/time string, was completed. 

Initially a conversion to POSIXct type was made using the substr() and as.POSIXct() functions 

and the variable TimeStamp (numeric integer) was added for easy of reading. 

• To ensure that only commercial flights were included, any squits for which there were missing or 

invalid values for FlightNumber were removed using the filter() function.  

• Squits containing missing AircraftType or invalid Speed values were also removed. 

• The unused variables were discarded using the select() function. 

Some sample entries from the dataset following this processing are displayed in Table 1. 

# Longitude   Latitude Altitude Speed Aircraft 

Type 

TimeStamp Origin Flight 

Number 

1 30.94 -96.19 23230 460 B752 1385596803 SFO UAL1204 

2 33.61 -111.90 8930 232 A321 1385596803 PHX AWE695 

3 42.55 -72.25 18200 440 DC10 1385596803 BOS FDX1026 

Table 1: First three squits from pre-processed dataset 

Creating Flight Threads:  Data subset selection 

For construction of individual flight threads (the sequence of squits representing a single flight) The 

pre-processed data were organised by grouping the ordered squits by each FlightNumber. This was 

achieved by using the dplyr group_by() and arrange() functions. 
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To remove aircraft that were taxying, landing and taking-off, the filter() function and the lead() and 

lag() values of Altitude were used to remove squits for which both adjacent values were zero. This 

method retained the first and the last squit in a flight thread to fix the exact departure and arrival time. 

In addition, for performance analysis by the phase of flight and across different airlines, three 

additional variables were added using the mutate() function. They were: 

• Company (nominal with multiple factors), containing the airline company, derived from the 

FlightNumber for future use in comparing performance between operators. 

• FlightPhase (ternary nominal - Climb, Cruise or Descent): a descriptor of the phase of flight when 

the squit was broadcast, calculated from the relative magnitude of adjacent values of Altitude. 

• TimeSquitting (numeric integer): Time in seconds since the initial squit in a flight thread. Where 

this initial squit has an Altitude of zero, this variable equates to the time since departure.  

A sample of the first few squits (with extra variables) for a departing flight thread is shown in Table 2. 

It is noted that the subject aircraft has departed within good ADSB reception given that a squit has 

been received from lift-off every five seconds. This may not always be the case as discussed below. 

Flight 

Number 

Company Aircraft 

Type 

Origin TimeSquitting Altitude Speed FlightPhase 

AAL1084 AAL B738 MIA 0 0 168 Climb 

AAL1084 AAL B738 MIA 5 80 168 Climb 

AAL1084 AAL B738 MIA 10 480 164 Climb 

AAL1084 AAL B738 MIA 15 650 164 Climb 

AAL1084 AAL B738 MIA 20 850 168 Climb 

Table 2: Derived Information on American Airlines flight 1084 departing Miami airport 

Viewing Flight Threads:  Exploratory Visualisation 

To visually explore the climb performance by type, the flight thread squits for each FlightNumber 

were filtered to include only the climbing compnent based on the FlightPhase variable. Flight threads 

for each aircraft type were plotted using geom_line() from the ggplot2 package (Wickham 2016). The 

Eurocontrol model was overlaid using the geom_segment() function. 

Comparison of Climb-Rates: Variable transformation and Grouped Data Summarisation 

To ensure that the climb-rates of each flight were accurately represented for comparison with 

Eurocontrol data for each altitude band (Table 3), each FlightThread was filtered to eliminate those 

that exhibited features that would indicate poor ADSB coverage, observations that could result in 

skewed results in the calculation of climb-rate, or that did not exhibit continuous climb. 

• Too few squits over the time period within the altitude band: At least four squits were required. 

• Insufficient altitude coverage: Squitted Altitudes range must exceed 80% of the altitude band under 

analysis. For example, within the altitude band 0 to 5000 feet the maximum Altitude squitted must 

exceed the lowest Altitude squitted by at least 4000 feet.  

• Excessive time (more than two minutes) between successive squits containing similar Altitude 

values (less than 500 feet), which indicate a levelling off period for which the climb-rate is not 

meaningful as it is not continuous. 

Altitude Band 

(feet) 

Climb-Rate (feet per minute) 

Airbus 
A319 

Airbus 
A320 

Airbus 
A332 

Boeing 
B737 

Boeing 
B738 

Boeing 
B744 

Boeing 
B752 

Boeing 
B772 

0 to 5000 2500 2500 2000 3000 3000 1500 3500 3000 

5000 to 15000 2200 2000 2500 2500 2000 1500 2500 2500 

15000 to 24000 1500 1400 2200 2500 2000 1500 2000 2000 

Above 24000 1000 1000 1500 1500 1500 1500 1500 1500 

Table 3: Climb performance for various aircraft models published by Eurocontrol 
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A linear model of altitude against time was applied to calculate a climb-rate for each aircraft type 

within each Eurocontrol altitude band (Table 3), using the lm() function with default settings. These 

resulting climb-rates were mapped using the ggplot2 geom_boxplot() function. 

Results and Discussion 

Pre-processing 

Following the initial cleaning and filtering of the data, there was a total of 32,275 flights contained 

within the data, which represents about 32% of the daily global airline flights in 2013 (International 

Air Transport Association 2014). After filtering, more than 100 flight threads were generated for each 

of the eight aircraft types. 

It is noted that there may be some bias in the flight thread selection because the ADSB network has 

best coverage around busy airports, for which operational restrictions may be imposed on the way the 

aircraft are flown. However, it is these airports at which ATC services are provided, the training of 

which requires the accurate performance modelling investigated by this study. 

Flight Thread Visualisation 

The blue lines in Figure 2 depict the flight thread trajectories for 116 Boeing B772 aircraft on climb to 

30,000 feet. Most aircraft seem to be in continuous climb, with the straggling blue lines to the right 

representing those that, for some operational reason, were caused to level off at an intermediate level. 

The overlaid red line depicts the integrated climb trajectory as published by Eurocontrol (see Table 3). 

It is observed that, at lower levels, the Eurocontrol climb-rates are higher than those achieved by the 

sampled aircraft and that most aircraft take longer to reach 30,000 feet than predicted by Eurocontrol. 

 
Figure 1: Boeing B772 Climb Trajectories to 30,000 feet 

 
Figure 2: Airbus A320 Climb Trajectories to 5,000 feet 
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Focussing on the initial climb below 5,000 feet (Figure 2), it is evident that a majority of the 2183 

Airbus A320 aircraft sampled did not achieve the 2,500 feet per minute rate published by Eurocontrol. 

Climb-Rate Comparison 

The climb-rates calculated using a linear model of squitted Altitude within the band below 5,000 feet 

is depicted in Figure 3 for each aircraft by type, along with the published value by Eurocontrol 

displayed as a red dot. Except for the Boeing B744 model, the Eurocontrol model overestimated and 

exceeded the third quartile for the climb-rate achieved for all other types. This supports the conclusion 

drawn from Figures 1 and 2 for the B772 and A320 types.   

 
Figure 3: Climb-rate to 5,000 feet by Aircraft Type 

Other Applications 

Whilst Figures 1 and 2 provide an effective means of displaying trajectories, it is likely that denser plot 

involving a higher number of flight threads would likely diminish usefulness. Under this consideration, 

flight threads for climb and descent against time and distance (integrating the Speed variable) would 

be instructive. 

The climb-rate analysis (Figure 3) in this study was limited to the 0 to 5,000 feet band, but initial work 

was done on the other bands (see Appendix 3). The analysis could be extended by further grouping by 

Company and Origin which would be highly useful for investigation of the potential bias in the 

sample and also for location specific simulation. In addition, the techniques would be highly applicable 

to examination of descent rates, turn rates (using the Track variable), airspeed and acceleration (using 

the Speed, Latitude and Longitude variables). 

Conclusions 

The construction of flight thread and climb-rate visualisations provided valuable insight into the 

movement of aircraft in the vertical plane and enabled a comparison between the recorded ADSB 

climb-rates and the published Eurocontrol values. 

It was found that that the published climb-rate for climb below 5,000 feet was overestimated for seven 

of the eight aircraft types investigated. Given potential biases associated with the collection method 

relying on ADSB coverage, it would be instructive to conduct further investigations on any variability 

in climb-rate that might occur between airlines and between aircraft from different departure airports.  

The analysis, visualisation and the underlying data manipulation techniques developed for this study 

have an applicability to climb-rate comparison in other altitude bands and to other areas of aircraft 

performance modelling, with the potential to greatly improve fidelity in ATC simulation training.  
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Appendix 1: R Code 

setwd("C:/Users/micha/Dropbox/Documents/trajectorydata") 

library(dplyr) 

library(ggplot2) 

library(tidyr) 

#################### Preprocessing #################### 

path <- "C:/Users/micha/Dropbox/Documents/trajectorydata " 

AllSquitFiles <- list.files(path, pattern=NULL, all.files=FALSE, full.names=TRUE) 

SquitDataFrameList <- list() 

# Create a dataframe list (time ~ 8 hours) 

for (i in seq_along(AllSquitFiles)) { 

  message(i) 

  SquitDataLoadedDataFrame <- fromJSON(file = AllSquitFiles[i]) %>% 

    lapply(function(appliedfunction) 

    { 

      # Convert each group to a data frame. 

      data.frame(matrix(unlist(appliedfunction), ncol=18, byrow=T)) 

    }) 

  SquitDataFrameList[[i]] <- do.call(rbind, SquitDataLoadedDataFrame) 

} 

#combine the list of dataframes into one (time ~ 6 hours) 

SquitData_UnPreprocessed = do.call(what = rbind, args = SquitDataFrameList) 

# Save dataframe for future analysis 

write.csv(SquitData_UnPreprocessed, "SquitData_UnProcessed.csv", row.names = F) 

# Import Dataset 

Squit_Loaded <- read.csv(file.choose(), header = T, na.strings = c(""), stringsAsFactors = F) 

# Explore Dataset 

str(Squit_Loaded) # 10,246,187 squits 

# Name variables, filter to remove NA, and select rel;evant variables  

Squit_Raw <- Squit_Loaded %>%  

  rename(AdsbCode = X1,Longitude = X2, Latitude = X3, Track = X4, Altitude = X5, Speed = X6,       AircraftType = 

X9,Registration = X10, SquitDateTime = X11, Origin = X12,Destination = X13, FlightNumber  = X17) 

# Type conversion of TimeStamp provided as YYYYMMDDHHmmSS 

d <- Squit_Raw$SquitDateTime  

Squit_Raw$DateString <- (as.POSIXct(paste(substr(d,1,4),"/",substr(d, 5,6), "/", substr(d, 7,8), " ", substr(d, 

9,10), ":", substr(d, 11,12), ":", substr(d, 13,14), sep = ""), tz = "GMT")) 

# For ease of reading, convert to integer 

Squit_Raw$TimeStamp <- as.integer(Squit_Raw$DateString) 

# Number of individual aircraft 

Squit_Raw %>% group_by(Registration) %>% summarize() %>% nrow() 

# Number of flights 

Squit_Raw %>% filter(!is.na(FlightNumber)) %>% group_by(FlightNumber) %>% summarize() %>%nrow() 

# calculate percentage of flights based on IATA values 

IATAFlightPerDay2013 <- 99700 

Squit_Raw %>% group_by(FlightNumber) %>% summarize() %>% nrow() / IATAFlightPerDay2013 * 100 

# remove squits containing missing values 

Squit_Raw <- Squit_Raw %>%  

  filter(Speed >= 0, !is.na(FlightNumber), !is.na(AircraftType), !is.na(Origin), !is.na(Destination)) %>% 

  select(AdsbCode, Longitude, Latitude, Track, Altitude, Speed, AircraftType, Registration, TimeStamp, Origin, 

Destination, FlightNumber) 

#################### Creating Flight Threads #################### 

# Arrange squits into a flight thread and remove taxying squits 

SquitData <- Squit_Raw %>% arrange(FlightNumber, TimeStamp) %>%  

  group_by(FlightNumber) %>% filter (Altitude > 0 | lead(Altitude) > 0 | lag(Altitude) > 0)  

# add additional variables 

ClimbDescentThreshold <- 500 

SquitData <- mutate(SquitData,  

 AltitudeBand = as.integer(floor(Altitude/1000) * 1000), # for modelling, a band is defined 

 AltitudeRate = ifelse(is.na(lag(Altitude)),(lead(Altitude) - Altitude)/(lead(TimeStamp) - TimeStamp) * 60,   

 (Altitude - lag(Altitude))/(TimeStamp - lag(TimeStamp)) * 60),  # Instant altitude rate 

 SquitInterval = ifelse(is.na(lag(TimeStamp)), 0,  

  TimeStamp - lag(TimeStamp)), # seconds since previous squit,  # Instant altitude rate 

                    TimeSquitting = TimeStamp - min(TimeStamp),  

                    PreviousAltitude = lag(Altitude), # altitude from previous squit 

                    Company = ifelse(is.na(FlightNumber), NA, # company from first three characters 

                                     ifelse(nchar(FlightNumber) < 3, NA, substr(FlightNumber, 1, 3))), 

FlightPhase = ifelse(is.na(AltitudeRate), NA,  

              ifelse(AltitudeRate < -ClimbDescentThreshold, "Descent",  

              ifelse(AltitudeRate > ClimbDescentThreshold, "Climb",  "Cruise")))) # Flight Phase : # Display the  
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initial squits for AAL1084 

SquitData %>% filter(FlightNumber == "AAL1084") %>% head() 

 

# ungroup data for further analysis 

SquitData <- ungroup(SquitData) 

 

# Convert flight phase to a factor 

SquitData$FlightPhase = as.factor(SquitData$FlightPhase)    

 

# Most prevalent companies 

SquitData %>% group_by(Company) %>% summarize(N = n()) %>%  

  arrange(-N) %>% select(Company, N) %>% head(20) 

 

# Aircraft types under analysis 

AircraftTypes <-  c("A320", "B738","A319", "B737", "B752", "A332", "B772", "B744") 

 

# Store the Eurocontrol climb profiles published by Eurocontrol for each of the aircraft types  

ClimbRateTo5000 <- c(2500,3000,2500, 3000, 3500, 2000, 3000, 1500)  # Rate blw 5000 for A320…. 

ClimbRateTo15000 <- c(2000,2000,2200, 2500, 2500, 2500, 2500, 1500) # Rate 5000-15000 for A320. 

ClimbRateTo24000 <- c(1400,2000,1500, 2500, 2000, 2200, 2000, 1500) # Climb Rate 15000-24000  

ClimbRateAbv24000 <- c(1000,1500,1000, 1500, 1500, 1500, 1500, 1500) # Climb Rate above 24000 

 

# Calculate the line segments for display of the Eurocontrol data to a ceiling of 35000  

x1 <- 0  

y <- c(0, 5000, 15000, 24000, 30000) 

# The x values are dependent on the previous climb rate/s 

x2 <- x1 + (y[2] - y[1]) / ClimbRateTo5000  

x3 <- x2 + (y[3] - y[2]) / ClimbRateTo15000  

x4 <- x3 + (y[4] - y[3]) / ClimbRateTo24000  

x5 <- x4 + (y[5] - y[4]) / ClimbRateAbv24000  

 

cVector <- 1:8 # Loop increment  

myplots <- vector('list', length = 8) # Storage for plots 

 

# Constants for filtering 

MaximumAltitude <- 30000 

MaximumTimePeriod <- 60 * 30   

MinimumAltitudeForFlight <- 100 

MaximumAltitudeForFlight <- 28000 

MaximumSquitInterval <- 200 

MaximumAltitudeRate <- 5000 

 

# Visualisarion of flight threads: Loop through for all eight types to obtain the plots 

for (c in cVector) 

{ 

  message(c) 

  myplots[[c]] <- local({ 

    c <- c  # Ensure persistent copy of c is retained in this loop 

    ThisAircraft <- AircraftTypes[c] # Text of the aircraft type 

    # Generate a subset of the data for climbing aircraft of type ThisAircraft, grouped by FlightNumber  

    ThisSquitData <- SquitData %>% 

      filter(Altitude <= MaximumAltitude, FlightPhase == "Climb", AircraftType == ThisAircraft,  

             !is.na(Company), !is.na(Origin)) %>% 

      group_by(FlightNumber, Registration) %>% filter(TimeSquitting < MaximumTimePeriod) %>% 

      mutate(TimeIncrementMinutes = TimeSquitting / 60, MinAltitude = min(Altitude), 

             MaxAltitude = max(Altitude), IsGoAround = (Altitude > 5000  & TimeSquitting < 400 ), 

             SquitIntervalClimb = ifelse(is.na(lag(TimeStamp)), 0,  

                                    TimeStamp - lag(TimeStamp))) %>% # seconds since previous squit,  # Instant 

altitude rate 

            # IsLongSquit = (SquitInterval > 300)) %>% 

      filter (MinAltitude < MinimumAltitudeForFlight, MaxAltitude > MaximumAltitudeForFlight,  

              sum(SquitIntervalClimb > 300) == 0, sum(TimeSquitting < 60 & AltitudeRate >  MaximumAltitudeRate) 

== 0)  

     

    print(ThisSquitData %>% filter(Altitude>4000, TimeSquitting < 60)) 

     

    NumberFlights <- ThisSquitData %>% summarize() %>% nrow() 

    currentplot <- ggplot(data = ThisSquitData, aes(x = TimeIncrementMinutes, y = Altitude, group = 

FlightNumber)) + 

      geom_line(alpha = 0.45, colour = "blue") + 

      scale_x_continuous(breaks=1:30) + 

      geom_segment(aes(x = x1, y = y[1], xend = x2[c], yend = y[2], colour = "red"), size = 2.2) + 
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      geom_segment(aes(x = x2[c], y = y[2], xend = x3[c], yend = y[3], colour = "red"), size = 2.2) + 

      geom_segment(aes(x = x3[c], y = y[3], xend = x4[c], yend = y[4], colour = "red"), size = 2.2) + 

      geom_segment(aes(x = x4[c], y = y[4], xend = x5[c], yend = y[5], colour = "red"), size = 2.2) + 

      geom_text(aes(x=2, y=28000, label=paste("n = ", NumberFlights)), size = 8) + 

      theme(legend.text=element_text(size=25), legend.position = c(0.8, 0.2), 

            legend.background =  element_rect(fill = NA), legend.key.width = unit(2,"cm"))  + 

      theme(plot.title = element_text(hjust = 0.5)) + 

      theme(axis.text=element_text(size=15), axis.title=element_text(size=20,face="bold")) + 

      labs(title=paste(ThisAircraft, " Climb Profile to 30,000 feet"), 

           x = "Time Since Departure (min)", y = "Altitude (feet)", color = "") + 

      scale_color_manual(labels = c("Published \n Profile"), values = c("red")) 

    print (currentplot) 

  }) 

} 

#################### Visualisation of Climb Rates 

pVector <- 1:4 # Loop increment  

myPplots <- vector('list', length = 4) # Storage for plots 

MinimumAltitudeBand <- c(1, 5000, 15000, 24000) 

MinimumAltitudeString <- c("Below ", "5000 to ", "15000 to ", "24000 to ") 

MaximumAltitudeBand <- c(5000, 15000, 24000, 30000) 

NumberAircraft <- c(0, 0, 0, 0) 

ClimbrateMatrix <- rbind(ClimbRateTo5000, ClimbRateTo15000, ClimbRateTo24000, ClimbRateAbv24000)  

MaximumTimePeriod <- c(6, 10, 10, 10) * 60  #five minutes to reach 5000 feet   

MaximumLag <- c(60, 120, 120, 120) 

MinimumAltitudeCovered <- (MaximumAltitudeBand - MinimumAltitudeBand) * .8 

for (p in pVector) 

{ 

  message(p) 

  myPplots[[p]] <- local({ 

    p <- p  # Ensure persistent copy of c is retained in this loop 

    # Generate a subset of the data for climbing aircraft of type ThisAircraft, grouped by FlightNumber  

    SdClimb <- SquitData %>% 

      filter(Altitude < MaximumAltitudeBand[p], Altitude > MinimumAltitudeBand[p], FlightPhase == "Climb", 

AircraftType %in% AircraftTypes) %>% 

      group_by(FlightNumber, AircraftType, Company) %>% 

      filter ((TimeStamp - min(TimeStamp)) <  MaximumTimePeriod[p], max(TimeStamp - lag(TimeStamp), na.rm = T) < 

MaximumLag[p])  %>% 

      summarize(MinAlt = min(Altitude), MaxAlt = max(Altitude),  

                TimeInt = max(TimeStamp) - min(TimeStamp),  

                ClimbRate =  60 * ((MaxAlt - MinAlt)/ TimeInt), 

                ClimbRateModelled = lm(Altitude ~ TimeSquitting)$coeff[2] * 60, N = n()) %>% 

      filter((MaxAlt - MinAlt) > MinimumAltitudeCovered[p], N > 4) 

    for (i in 1:8) 

    { 

      NumberAircraft[i] <- SdClimb %>% filter(AircraftType == AircraftTypes[i]) %>% summarize() %>% nrow() 

    } 

      currentplot <- ggplot(SdClimb, aes(x=AircraftType, y = ClimbRateModelled)) +  

      geom_boxplot(outlier.shape = NA) + 

      stat_boxplot(geom ='errorbar') +  

      geom_jitter(width = 0.1, alpha = 0.2, size = 0.9) + 

      geom_point(aes(x="A320", y = ClimbrateMatrix[p,1]), colour="red", size = 6) + 

      geom_point(aes(x="B738", y = ClimbrateMatrix[p,2]), colour="red", size = 6) + 

      geom_point(aes(x="A319", y = ClimbrateMatrix[p,3]), colour="red", size = 6) + 

      geom_point(aes(x="B737", y = ClimbrateMatrix[p,4]), colour="red", size = 6) + 

      geom_point(aes(x="B752", y = ClimbrateMatrix[p,5]), colour="red", size = 6) + 

      geom_point(aes(x="A332", y = ClimbrateMatrix[p,6]), colour="red", size = 6) + 

      geom_point(aes(x="B772", y = ClimbrateMatrix[p,7]), colour="red", size = 6) + 

      geom_point(aes(x="B744", y = ClimbrateMatrix[p,8]), colour="red", size = 6) + 

      theme(axis.text=element_text(size=15), axis.title=element_text(size=20,face="bold")) + 

      labs(x = "Aircraft Type", y = paste("Climb Rate ", MinimumAltitudeString[p], MaximumAltitudeBand[p], " 

feet")) + 

      geom_text(aes(x="A320", y=600, label=paste("n = ", NumberAircraft[1])), size = 6) + 

      geom_text(aes(x="B738", y=600, label=paste("n = ", NumberAircraft[2])), size = 6) + 

      geom_text(aes(x="A319", y=600, label=paste("n = ", NumberAircraft[3])), size = 6) + 

      geom_text(aes(x="B737", y=600, label=paste("n = ", NumberAircraft[4])), size = 6) + 

      geom_text(aes(x="B752", y=600, label=paste("n = ", NumberAircraft[5])), size = 6) + 

      geom_text(aes(x="A332", y=600, label=paste("n = ", NumberAircraft[6])), size = 6) + 

      geom_text(aes(x="B772", y=600, label=paste("n = ", NumberAircraft[7])), size = 6) + 

      geom_text(aes(x="B744", y=600, label=paste("n = ", NumberAircraft[8])), size = 6) 

    print (currentplot) 

  })} 
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Appendix 3: Additional Plots 

 
Figure A1: Climb rate 5,000 to 15,000 feet by Aircraft Type 

 

 
Figure A2: Climb rate 15,000 to 24,000 feet by Aircraft Type 

 

 
Figure A3: Climb rate above 24,000 feet by Aircraft Type 

 


